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Figure 1. The pseudoscalar e�ective mass plot
for � =5.9, �= 0.1385. The 1� 1 one-state (dia-
mond), 2�2 two-state (square), 3�3 three-state
(circle) �ts are shown.

states with the following forms,

f1S(r) = exp(��1Sr); (2)

f2S(r) = (1� �2S) exp(��2Sr): (3)

For � =5.5, 5.7 and 5.9, we use 1S, 2S and lo-
cal sources, while for � =6.1, only 1S and local
sources are used. We choose 2 � 2 two-state �ts
as our best �ts. In order to estimate the sys-
tematic error of excited state contamination, we
compare our best �ts with the results from 1� 1
one-state and 3� 3 three-state �ts. We �nd that
the di�erence is less than 1% for �= 5.7, 5.9 and
about 1-1.5% for �=6.1. (See Figure 1.)
As the chiral extrapolation error, we take the

di�erence in the chiral extrapolation with three
�'s and four �'s. The results are again less than
1% for � =5.7 and 5.9, and about 3% for �=6.1.
(See Figure 2.)
The one loop the renormalization factor which

connects the lattice bare mass with MS mass is,

mq(�) = emlat
q

h
1+�v(q

�)(0(ln eCm� ln(a�)))
i
:(4)

The mean-�eld improved bare mass emlat
q is given

by emlat
q = m0=(1�(�=3)�v+: : : ) in perturbation

theory [6]. 0 = 2=� is the leading quark mass
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Figure 2. The Chiral extrapolation of m2

PS for
� =5.9. The four � �t (solid line) and the three
� �t (dashed line) are almost indistinguishable.

Table 2
Our results for A, the coeÆcient of the lin-
ear �t in the m2

� chiral extrapolation, emlat
q (in

MeV), the tadpole improved lattice bare mass,
and mq(2GeV) (in MeV), in the MS scheme,
renormalized at 2 GeV (q� = �=a; 1=a.) .

� 5.5 5.7 5.9 6.1
A 5.3(7) 4.1(5) 3.05(7) 2.24(10)emlat
q 4.34(17) 3.9(1) 3.3(1) 3.2(1)

mq(�=a) 4.75(19) 4.41(12) 3.90(13) 3.84(18)
mq(1=a) 6.20(25) 4.89(13) 4.19(14) 4.05(19)

anomalous dimension. eCm for SW-improved light
quarks is 4.72 [8].
Using Eq.(4), we �rst convert the lattice quark

mass to the MS mass at � = �=a or 1=a, then
run it to the common scale of 2 GeV. In Eq.(4),
there is another scale q�, which is the scale for the
gauge coupling constant. Since we do not know
the two-loop correction, it is not obvious which
scale we should take for q�. We estimate the size
of unknown higher order corrections to Eq.(4) by
varying q� between 1=a and �=a. This procedure
is consistent with assuming a coeÆcient of order
unity for the �2v term. Our estimates are 30%,
13%, 7%, 5% for � = 5.5, 5.7, 5.9, 6.1.
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Figure 3. The continuum extrapolation of mq.
The upper value is the � =6.1 result, and the
lower value is the naive linear extrapolation of the
�= 5.7, 5.9, 6.1 data. The data for � = q�=1/a
(circle, solid line), �/a (diamond, dashed line) are
presented in the same graph.

There are both O(�a) and O(a2) corrections
to the action, and the continuum extrapolation
could change depending on the relative size of
these subleading terms. All we can say is that
there is a systematic downward trend as we ap-
proach to the continuum. Without a theoretical
argument to tell us about the a-dependence, we
take the � =6.1 result as an upper value and take
the linearly extrapolated value using �= 5.7, 5.9,
6.1 as a lower value. Our estimate of the contin-
uum extrapolation error is 11%. (See Figure 3.)

3. Summary

In summary, our error estimates are,

excited states < 1.5%
chiral extrapolation � 3%
perturbative 5%
continuum extrapolation 11%

combined 17%

The perturbative and a dependent errors are in-
tertwined. We combine them linearly in the fol-
lowing way. As we saw earlier, the scale of the

coupling constant q� is arbitrary. When we dis-
cuss the continuum limit, we therefore perform
the extrapolation of the data for both q� = 1=a
and �=a (Figure 3). The outer points so obtained
are taken as the limits of the combined error bar.
The remaining errors are much smaller and com-
bined in quadrature. Our �nal result for the light
quark mass in the MS scheme in the quenched
approximation is

mq(� = 2GeV;nf = 0) = 3:6� 0:6MeV: (5)
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